Kernel Methods for Nonparametric Bayesian Inference of Probability Densities and Point Processes
نویسنده
چکیده
Nonparametric kernel methods for estimation of probability densities and point process intensities have long been of interest to researchers in statistics and machine learning. Frequentist kernel methods are widely used, but provide only a point estimate of the unknown density. Additionally, in frequentist kernel density methods, it can be difficult to select appropriate kernel parameters. The Bayesian approach to inference potentially resolves both of these deficiencies, by providing a distribution over the unknowns and enabling a principled approach to kernel selection. Constructing a Bayesian nonparametric kernel density method has proven to be difficult, however, due to the need to integrate over an infinite-dimensional random function in order to evaluate the likelihood. To avoid this intractability, all Bayesian kernel density methods to date have either used a crippled model or a finite-dimensional approximation. Recent advances in Markov chain Monte Carlo methods have improved the situation for these doubly-intractable posterior distributions, however. If data can be generated exactly from the model, then it is possible to perform inference without computing the intractable likelihood. I propose two new kernel-based models that enable an exact generative procedure: the Gaussian process density sampler (GPDS) for probability density functions, and the sigmoidal Gaussian Cox process (SGCP) for the Poisson process. With generative priors, I show how it is now possible to construct two different kinds of Markov chains for inference in these models. These Markov chains have the desired posterior distribution as their equilibrium distributions, and, despite a parameter space with uncountably many dimensions, require only a finite amount of computation to simulate. The GPDS and SGCP, and the associated inference procedures, are the first kernel-based nonparametric Bayesian methods that allow inference without a finite-dimensional approximation. I also present several additional kernel-based models for data that extend the Gaussian process density sampler and sigmoidal Gaussian Cox process to other situations. The Archipelago model extends the GPDS to address the task of semi-supervised learning, where a flexible density estimate can improve the performance of a classifier when unlabeled data are available. I also generalise the SGCP to enable a nonparametric inhomogeneous Neyman–Scott process, and present a soft-core generalisation of the Matérn repulsive process that similarly allows non-approximate inference via Markov chain Monte Carlo.
منابع مشابه
Bayesian Nonparametric and Parametric Inference
This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.
متن کاملParametric and Nonparametric Inference in Equilibrium Job Search Models
Equilibrium job search models allow for labor markets with homogeneous workers and rms to yield nondegenerate wage densities. However, the resulting wage densities do not accord well with empirical regularities. Accordingly, many extensions to the basic equilibrium search model have been considered (e.g. heterogeneity in productivity, heterogeneity in the value of leisure, etc.). It is increasi...
متن کاملBayesian Approaches to Non-parametric Estimation of Densities on the Unit Interval
This paper investigates nonparametric estimation of density on [0,1]. The kernel estimator of density on [0,1] has been found to be sensitive to both bandwidth and kernel. This paper proposes a unified Bayesian framework for choosing both the bandwidth and kernel function. In a simulation study, the Bayesian bandwidth estimator performed better than others, and kernel estimators were sensitive ...
متن کاملNonparametric Bayesian Kernel Models
Kernel models for classification and regression have emerged as widely applied tools in statistics and machine learning. We discuss a Bayesian framework and theory for kernel methods, providing a new rationalization of kernel regression based on nonparametric Bayesian models. Functional analytic results ensure that such a nonparametric prior specification induces a class of functions that span ...
متن کاملNonparametric Bayesian inference on multivariate exponential families
We develop a model by choosing the maximum entropy distribution from the set of models satisfying certain smoothness and independence criteria; we show that inference on this model generalizes local kernel estimation to the context of Bayesian inference on stochastic processes. Our model enables Bayesian inference in contexts when standard techniques like Gaussian process inference are too expe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009